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Schrodinger equation as recurrences: I. Band-matrix 
Hamiltonians 
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Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rei, 
Czechoslovakia 

Received 31 January 1983, in final form 5 July 1983 

Abstract. We describe a new algebraic treatment of the chain-model eigenvalue problem. 
It is based on the (21 + 1)-diagonal and asymptotically smooth structure of the correspond- 
ing Hamiltonians. The formalism is illustrated on the phenomenological doubly anhar- 
monic oscillators. 

1. Introduction and summary 

One of the most common formal difficulties connected with the applicability of 
perturbation theory is usually the lack of a suitable unperturbed Hamiltonian Ho. A 
textbook example is the anharmonic oscillator HA = p 2  + r 2  + Ar4 where the obvious 
choice Ho = p 2  + r 2  leads to divergences (Simon 1969). 

The puzzling divergence of the anharmonic-oscillator energies EA may be removed 
easily by another choice of Ho (Halliday and Suranyi 1980). Nevertheless, a more 
efficient solution of the Schrodinger eigenvalue problem HA$ =EA$ was found by 
Graffi and Grecchi (1975). It employs directly the pentadiagonal structure of HA in 
the unperturbed oscillator basis, and represents the solution in terms of the matrix 
continued fractions (MCF). 

In practice the MCF recurrent technique is formally applicable to any ( 2 t +  
1)- diagonal Hamiltonian, i.e. to the so-called chain models appearing in various 
branches of physics (see e.g. Haydock (1980) and references therein). A simple testing 
example of such a system are the doubly anharmonic oscillators (DAHO) 

H(m,n)$ =E(m,n)4, 
H(m, f l )  = p 2  + r 2  + h2p4 + g2r4 + . . . + hmp 

2 m  (1) + g p ,  h m  > O ,  gn > O ,  

investigated by Znojil (198 1) and admitting various physical interpretations of the 
dispersive or ‘velocity confining’ anharmonicities p4 . . . related originally to the semi- 
relativistic kinetic-energy operator T ( p )  = (1 +p2)1’2 - 1 +O(pZm+’) .  

When compared with some standard versions of perturbation theory, the non- 
numerical mathematical background of the MCF technique has been well developed 
for t = 1 only. Nevertheless, the general t > 1 MCF and chain models need not always 
be treated and interpreted in a semi-numerical context only. Our present intention 
is to show that some of the analytic t = 1 techniques may be generalised directly to 
any t >  1. 

@ 1983 The Institute of Physics 400 1 
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The contents of our paper are organised as follows. In 9: 2 we review briefly the 
recurrent MCF idea. Its factorised reinterpretation (Znojill983) is recalled and applied 
to the Feshbach (1958) construction of the effective Hamiltonian in 8 3.1. In 9: 3.2 
this is illustrated on the simplest DAHO examples. 

In the asymptotic ‘quasiconstant’ approximation, the elimination of recurrences 
and the general algebraic construction of J, and underlying MCF quantities is obtained 
as our main result in $9: 4.1 and 4.2. Finally, in 8 4.3, the symmetric DAHO example 
enables us to obtain closed analytic results including, e.g., the explicit n >> 1 asymptotic 
behaviour of the wavefunctions. 

We may summarise that the present method: 
(1) clarifies algebraically the factorisable character of the multiterm recurrences 

and eigenvalue problem in the infinite-dimensional chain models, 
( 2 )  simplifies the rigorous analysis of the normalisability of J, and also, in connec- 

tion with the semi-numerical MCF technique, the proofs of the MCF convergence, 
(3) provides a practical prescription how to construct the optimal and reliable 

‘smoothed’ approximants to the band Hamiltonians in the purely numerical ‘cut-off’ 
context, and 

(4) enables us to construct various algebraically invertible infinite auxiliary 
quasiconstant matrices Ho. As far as simplicity of the unperturbed basis is often 
preferred even to the smallness of the perturbations H - H o ,  this might help us to 
achieve suitable rearrangements of perturbation theory (cf e.g. Znojil 1980) and/or 
to understand its divergences in the future. 

2. The Feshbach and MCF methods 

In the general infinite-dimensional linear equation of the non-homogeneous or 
Schrodinger type, 

HJ, =E4 +x,  (2 1 
we shall consider a non-zero or zero input function x such that x = Px, where P 
denotes a finite-dimensional projector on a ‘model’ subspace of the whole Hilbert 
space. It is useful to partition (2) and write 

P ( H  - E)P$ + PHQJ, = Px, Q = l - P ,  QHPJ, + Q ( H  -E )Q$ = 0. 

Formally we may eliminate QJ,[ = (E - QHQ)-’QHP$] from the second row and 
obtain the first one in a simple form 

%e(E)cp =x. (3) 

%(E) = P(H - E ) P  - PHQ[Q(H -E)Q]-’QHP (4) 
of the finite-dimensional ‘effective’ matrix Hamiltonian, this is the essence of the 
projection method of Feshbach (1958). 

Obviously, equation (3) may be solved numerically with arbitrary precision. As a 
finite-dimensional inversion or eigenvalue problem (with ,y # 0 or x = 0, respectively) 
it disguises all the infinite-dimensional algebra of (2) in the definition (4). 

With cp = PJ, and with the definition 
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In the following text, we shall assume that the operator H has a block-tridiagonal 
structure in the chosen basis, 

\ . . . /  

As a consequence, definition (4) leads to the partitioned form of the effective Hamil- 
tonians 

/ A 0  Bo \ 

where P =  lO) (O(+ l l ) ( l l+ .  . .+I& + l ) t -  l ) ( ( k  + l ) t  - 11 and 

Gk =Ak-BkG;:iCk+I, k = 0, 1 ,  . . . . (7 1 

In agreement with Znojil (1980), the MCF recurrences (7) may be initialised by the 
truncation of H, namely, by GN =AN in the limit N + 00. This completes the reduction 
of (2) to its finite-dimensional equivalent (3). 

3. Chain models and exact effective Hamiltonians 

In agreement with 9 2, the correct MCF input (exact effective ( t  xt)-dimensional 
submatrix G k )  reduces (2) to the trivial equation (3) and vice versa, any linear problem 
(2) with the band matrix Hamiltonian H leads in essence to the infinite-dimensional 
inversion of Q ( H  -E)Q. Thus, we may replace recurrences (7) by the rigorous 
non-McF definition 

written in terms of the projectors 

3.1. Complete factorisation 

Assuming for simplicity that the matrices Bk and C z + l  in ( 5 )  are lower triangular, we 
may evaluate directly the projected inversion Pk[Rk(H - E ) R ~ ] - ' P ~  in (8 )  by means 
of the complete factorisation method (Znojil 1983). In essence, this method is based 
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on the decomposition of H - EI into the product 

of the 2t two-diagonal and 3-diagonal auxiliary matrices. In our original paper, 
the detailed algebraic recurrent definitions of the quantities pn, cy!), yn, P?' and un 
(i, j = 1,2,  . . . , t, and n = 1,2 ,  . . .) were studied, while here we re-emphasise only their 
standard initialisation (with (H)M+i ,M+i  = 0, i, j = 1,2,  . . , in the 'cut-off' limit M + CO) 

and prove the following. 

Theorem 1. For the factorised Hamiltonians (9), we may write formally their explicit 
Feshbach ( N  X N)-dimensional equivalents in the form (6) with N = ( k  + 1 ) t  and with 
the effective ( t  X ?)-dimensional submatrices 

Proof. The product form of (9) enables us to write any projection of H -E  as the 
same projected product of the two-diagonal factors. Thus we get (10) after the double 
use of the formula 

1 -61 6162 * .  . I' 4'. & - :  [ 1 -62 . . .  *..I 
in (8). 

3.2. Example: asymmetric DAHO 

In the oscillator basis, the phenomenological DAHO Hamiltonians H = Ht,,,nl in (1) 
have a symmetric and real band-matrix form with 2t + 1 diagonals, t = max(m, n). 
From the formal point of view it is convenient to consider a large index k in (6) .  
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Then we may replace the complicated DAHO matrix elements by their asymptotic 
expansions. In the leading order, we get the formula 

(12) 

N = ( k  + l ) t ,  Q = R k + l ,  J =  

where K is a constant matrix such that 
i l  1 

m <n,  

m > n  

- 1  
1 

- 1  

\ . . ./ 
Hence, we may apply theorem 1 and obtain immediately the effective matrix Hamil- 
tonian %(E)  and equation (3) in the leading-order approximation. 

Below we shall use also the symmetric (m = n )  DAHO chain model as another 
illustrative example. Due to the exact elimination of its outer diagonal in some bases, 
its factorisation will be much less trivial. 

4. Asymptotically smooth chain models 

In the following, we shall assume that Q(H -E)Q may be approximated by a constant 
matrix K (cf example ( 1 2 ) )  or by a product p K v  where p and (T are some appropriate 
diagonal matrices introduced in (9), reflecting, e.g., the overall increase of matrix 
elements with increasing indices, and containing possibly also the error estimates of 
the type 1 + O( l / N ) ,  N = dim P, P = 1 - Q. Formally, the presence of p and U is 
irrelevant-we may include U in the 'renormalised' vector, 4 -* ;nL, and simply multiply 
equation ( 1 )  by the non-singular factor p - l  from the left. 

4.1. Algebraic factorisation of K 

In the real and symmetric case, the factorisation (9) of the constant matrix K may be 
given the form 

a&), ar-l(t), . . . a ~ ( t ) ,  0 ,  . . . 
(14)  

= y  xKUXKL, 

1 a ( l )  0 . . .  1 a'2' 0 . .  * 
KIJ= 0 1 a ( l )  o . . , ] x ( o  1 a (2 )  0 ...I i . . .  * . .  

a ( r )  0 . . .  
1 a'" 0 . . .  ) = K L  
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(1) (2) with the constant diagonal matrix, y = l/(a CY with the normalisation of 
matrix elements uo(t)  = 1, and with the mutually commutative two-diagonal factors 
in Ku. Our intention is to illustrate the general factorisation method of 9 3 by its 
ap lication to the specific matrices (14), i.e., in essence, to define the matrix elements 
a ,a  , . . . , a‘” as functions of al( t ) ,  u2(t), . . . , q ( t )  in an explicit way. 

In thesimplest t = 1 case, we have a l ( l )  = a ‘ ” +  l/a(”withanelementaryinversion. 
The first non-trivial t = 2 example 

. . . 

( R  (2) 

a1(2) =CY‘1’+1/CY~1J+a~2J+l/a~2~, 

u2(2) = 2 + ( a “ ’ +  l/a(1’)(a‘2’+ 1 / d 2 J ) ,  

inspires us to eliminate the irrelevant a + l /a ambiguity and to denote 
or, with 2 cosh pi = X(i1, 

= exp(*pi) 

a ( i ) = a ; 2 )  =&y(i,*(*;i) -1)1’*, (15) 
In general, we then have the following theorem. 

Theorem 2. Factorisation (9) of the constant matrix K may be defined by formulae 
(14) and (15) where the factors X,;, are roots of the polynomial equation 

and 

are linear functions of the matrix elements of K. 

Proof. From the recurrences (14), i.e. 

we infer a possibility to use the ansatz 

for any t 2 1.  The unknown coefficients A:k’(t) may be obtained from the recurrences 
(14) by insertion. It is documented in table 1 and illustrated by the further t = 3 example 

ao(3) = 1, 

U 1 (3) = 2 cosh /3 1 + 2 cosh p2 + 2 cosh p3, 

U2(3 )  = 3 + 4 ( ~ 0 s h  pi cosh p 2  + cosh 

~ 3 ( 3 )  = 2a1(3) + 8 cosh pi cosh p2 cosh p3. 

cosh p3 + cosh p 2  cosh p3), 

Now our task is to define the inverse mapping ai +pi ,  1 i, j s t. 
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Table 1. Sample of coefficients A;k'(f) .  

\ 

0 1 2 3 
k 

1 
2 
4 t 

8 2V-1) 

16 4(r - 2) 

8(t  - 3 )  32 2r 1 l )  

16(t - 4) 4jl i2) 
128 32(t - 5 )  8(r;3) 2 ( 7 )  

64 

Our first result concerns the compact and explicit formula 

t - k + 2 j  
Alk'(t) =2""( , ) 

which may be verified by mathematical induction and a certain amount of patient 
elementary manipulations. As a consequence, the mapping (17) may be reinterpreted 
as a composition of nonlinear transformations cosh Pk +Si (cosh P I ,  , . . , cosh PI) with 
a pair of two separate linear mappings 

and 

i = I ,  2 ,  . . . , [(t  + 1)/2], 

where 

S"(X1, x.2, . * I X")  = 1, 

S " ( X I , X Z , . .  . , X n ) = X l X 2 , . . . , X " ,  

are the ordinary symmetric functions defined by the identity 

S 1 ( X 1 , X Z I . .  . , x " ) = x l + X 2 + .  9 .+xn,. . . , 

N 

s,(x~, ~ 2 ,  . . . 
m =O i = l  

xN) = n (X +xi). f X N - m  

The matrices of the linear systems (19) and (20) are triangular and easily invertible 

(23) 

(appendix). Hence, we may also invert the mapping a i ( ? )  Sj,  
S,(coshpl,. . . , coshp,)=2-"Tm(a), m =0 ,  1 , .  . . , t .  
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Finally, the definition (22) of the symmetric functions S ,  implies that the polynomial 
equation 

r 

m = O  
( -~)"~-"T, (U)(COS~P)~-"  = O  

determines all the factors in (14) in a purely algebraic way. 

4.2. Wavefunctions 

Obviously, in terms of the /3 or X variables defined by theorem 2, the purely algebraic 
definition of the asymptotic effective Hamiltonian (6) is an easy consequence of 
theorem 1. Nevertheless, rather surprisingly, the matrix elements of K-' are not 
unique in general. For example, we get G(kl) = 1 / a  I:: and G(k2' = 1 / a  for t = 1. 

This ambiguity is not encountered in the asymptotic m # n DAHO examples (12) 
where a::', = 1, i = 1, 2 , .  . . , t. In the other, non-degenerate chain models, we may 
prove the following. 

= a 

Theorem3. Providedthatak/ak-I= 1 + O ( l / k ) ,  k >>1,andX(i ,>2 ,X~i)#X(i l , i , j=1 ,  
2, . . , , t ,  the norm of the wavefunctions. 

is finite if and only if we choose a ' I '  = a [!) in (1 5 ) .  

Proof. Since /a i?) 1 > 1 and la I!!) 1 < 1, we may neglect the higher-order corrections and 
write the definitions 

c1 
QKQ4 = -QKP$ = 1 ir), 

Here, the explicit form of the matrix elements may be inserted, which gives 

This is one of our most interesting formulae and implies that, for m >> 1 ,  we have an 
estimate . .  

I ( m  I*)/(m - 114) I = l s i r r  max 14, m >>1. ( 2 5 )  

Hence, the infinite series ll+ll converges or diverges as a geometric series. 
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To avoid confusion, we must re-emphasise that the above energy-independent 
construction of the normalisable vector i+b is not contradictory since this vector satisfies 
the Schrodinger equation at the physical energies only. 

4.3. Example: symmetric DAHO 

After an appropriate scaling of coordinates r + vr, p + (l/v)p, an approximate cancella- 
tion of diagonals in the DAHO m = n matrix H(,,,,nlij may be achieved in the i, j >> 1 
asymptotic region. Thus, instead of (12), we get the leading-order formula 

(26) H(m,n)i ,  - ESij = pi IZ  I F J 3  i, j’ >> 1, 

= 1, 
- 0, 

Ii - jj =even, 
li - j /  =odd, r i j  - 

where pi and gi contain again the irrelevant i and j dependence of Hij and possibly 
also the explicit non-diagonal error estimates 1 +O(l/(i  + j ) ) .  

The factor rij is a projector on the even- or odd-indexed subspaces so that it is 
sufficient to consider just one of the two orthogonal and identical infinite matrices K 
with the smaller parameter t = t ,  = integer part of ( f m ) .  Thus with the matrix elements 

(27) 

we may use theorems 1 and 2. 
One of the most obvious ways to eliminate the LT + l/a ambiguity without any 

recourse to theorem 3 is to return to the original MCF interpretation of Gk. We do 
not get any contradiction-in the simplest quartic-quartic example with m = n = 
2t ,  = 2, the continued-fractional result 

= 3 + 2J2 = 5.828 
1 

1 
6-- 

6 - .  . . 
Gk-6- 

is easily summable and eliminates the plus-sign choice in (15). Similarly, for m = n = 3,  
we get t,, = 1 and 

1 = 3. (29) 
1 

Gk - 2016- 
1 

2016 - 
2016-. . . 

Starting from m = n = 4, the corresponding algebra may be combined with the numeri- 
cal tests as well. 

In the light of theorem 3, criterion (25 )  specifies now the upper P4-independent 
estimate of the rate of convergence of ( I i + b I ( .  Up to the sufficiently high-order potentials 
V = H(m,n)  - p 2  - p  * *  + . . . + r l8  with tas s 4, this is still a non-numerical task in prin- 
ciple-we may obtain by algebraic means. For convenience, the corresponding 
t s 4 linear functions Tk(a) to be used in (16) are listed here in table 2. 

In table 3 the explicit exact values of cosh pi are given up to the duodecadic- 
duodecadic DAHO case. We may notice that the assumptions of theorem 3 appear to 
be satisfied so that, in contrast to the asymmetric DAHO examples, the corresponding 
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Table 2. First five functions ?-,(a) = 2'S,(cosh P I , .  . . , cosh P I ) .  
~ ~ 

To(a)  = 1 1 3 0  
Tl (a  1 = a  L t a l  
T2( a ) = a2  - t 1 2 2  
T3(a ) = a 1 - ( t  - 1)a I t z 3  
T , ( a ) = a 4 - ( f - 2 ) a 2 + t ( t - 3 ) / 2  r 3 4  

Table 3. Leading-order asymptotic factorisation of the symmetric DAHO operator H = 
p2" +.  . . + r 2 " .  

m i 

2 1 
3 1 
4 1 

2 
s 1 

2 
6 1 

2 
3 

~~ ~ 

111 

0.171 572 8 7 5 . .  . 
0.333 333 333 . .  . 
0.039 566 129..  . 
0.446 462 692 . , . 
0.105 572 808. . . 
0.527 864 045 , .  , 
0.017 332 380..  , 
0.171 572 875. .  , 
0.588 790 706, , , 

wavefunctions lie mostly within a small model space. Also the norm 11411 converges 
extremely quickly. All these features of the symmetric DAHO system are compatible 
with the preceding numerical results (Znojil 1981). 

Appendix. Inversion of the triangular matrices 

For the triangular matrices 

/ \ . . .  

the inverse 

is defined by the obvious relations 
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and it may be given the explicit Kramer form (Korn and Korn 1968) 

pi = +det(“ 1 ), 
ai = -det(ai), 

bi ai+l 

ai 1 0 
yi =-det bi ai+l . . .  

I , i  bi+l .t,“. 
In particular, for the matrix elements (18), 

T - 2 i + 2  T - 2 i + 2  T - 2 i + 2  
a i = (  ), bi=(  ), c i=(  ), . . a ,  (A5) 

we may evaluate (A4) 

ai = -(T - 2 i  + 2 ) ,  pi = +k(T-2i +2)(T -2 i  - l), 
1 (A61 

yi = -g(T -2 i  +2)(T -2 i  -2)(T - 2i  -3), 

ai = B ; ” ( T ) ,  p i  = B;”(T) ,  

. . . ,  
and, changing the notation to 

yi = B ! ” ( T ) ,  . . . , 
we arrive at the final formula 

T - 2 i + 2  ( T - 2 i ; k + 2 )  
Blk’(T)  = (-l)& 9 i = 1 , 2 , ,  . . , (A7) T - 2 i  + 2  - k 

which defines the integer coefficients needed in (19) and (20) in 0 4.1 
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